Insects & Mites
The Wisconsin Pest Bulletin .. 17

What’s New?
NPM of internet event UW-Right Now 17

Crops
Vegetable Crop Updates Now Available 17
The National Soybean Sustainability Initiative Online Survey Tool .. 18
Wisconsin Vegetable Crop Update will have Spanish Versions .. 18
2012 Sulfur Fertilizer Price Comparison for Alfalfa...... 18

Vegetable Crop Updates Now Available

The third and fourth updates of the vegetable crop update are now available. To access the third vegetable crop update (4/9/12) [click here](#). To access the fourth vegetable crop update (4/15/12) [click here](#).

The Wisconsin Pest Bulletin
The Wisconsin Pest Bulletin from the Wisconsin Department of Agriculture, Trade and Consumer Protection provides pest population estimates, pest distribution and development data, pest survey and inspection results, alerts to new pest finds in the state, and forecasts for Wisconsin’s most damaging plant pests.

[Click here](#) to view the issue.

NPM on internet event UW-Right-Now
Roger Schmidt, NPM and IPM technology specialist

UW-Madison’s communications office setup a multimedia internet project to chronicle “24 hours of UW-Madison life” via Twitter, messages, pictures, and short videos. A special Twitter hashtag called #UWRightNow was set up for the event, and a special website is available for everyone to view some of the highlights from the special day. People participating from around Wisconsin, the US, and the entire world showed the global reach of the university. The UW Nutrient and Pest Management program participated as shown in the message on the right.
Online.

Protocols (Whole Farm Assessment
communication and marketing purposes.
this data can be used by state and national organizations for
enhance our research and educational programs.
and sustainability practices
soybeans growers in the Midwest are in regards to conservation
combined data will allow us to look at a baseline of where
no grower specific data will be available.
the survey.
soybeans, we are working on collecting data from growers for
researched based data from the Midwestern region.
Sustainability protocol that incorporates questions linked to
value chain.
communities thrive
services and productivity of their farms, help their rural
management systems that will help producers to achieve
resource conservation efforts and look at the environmental,
social and economic aspects of many of the practices they
currently use in their farming operations.

To be proactive in regards to sustainability the National
Sustainable Soybean Initiative (NSSI) was created in
2011. NSSI’s mission is to develop a roadmap of soybean
management systems that will help producers to achieve
verifiable sustainability outcomes, improve the environmental
services and productivity of their farms, help their rural
communities thrive, and satisfy performance expectations of
the value chain.

We have developed a whole farm and soybean specific
sustainability protocol that incorporates questions linked to
environmental, economic and social sustainability
factors. These criteria have been established utilizing
researched based data from the Midwestern region. Growers
are able to use the information from this protocol for their own
on-farm research and marketing requirements.

To get a coordinated, regional baseline of sustainability of
soybeans, we are working on collecting data from growers for
the survey. No specific field or farm specific data will be
received on the collection end, but growers are able to keep the
data for themselves. We will only look at combined data and
grower specific data will be available. However, the
combined data will allow us to look at a baseline of where
soybeans growers in the Midwest are in regards to conservation
and sustainability practices, and we will use the data to better
enhance our research and educational programs. Furthermore,
this data can be used by state and national organizations for
communication and marketing purposes.

With this, we encourage you to participate by filling out
Whole Farm Assessment
(http://www.surveymonkey.com/s/3802488/NSSI-Sustainability-
Protocols-Whole-Farm-Section) and Soybean Assessment
(http://www.surveymonkey.com/s/776277/NSSI-CASH-
GRAIN-SOYBEAN-SPECIFIC-PLECT) protocols
online. For more information, please contact Shawn Conley
(spconley@wisc.edu) or look at coolbean.info.

The National Soybean Sustainability
Initiative Online Survey Tool
Shawn Conley, Vince David, Carrie Laboski, Paul Mitchell,
Paul Esker, Jed Colquhoun, AJ Bussan, Jeff Wyman and
Deana Knuteson

Soybean production is a critically important component of
US agriculture both domestically and in the global market
place. Global markets are increasingly demanding
documentation of sustainability creating challenges to soybean
producers. To ensure there is a balance to their agriculture,
sustainability programs are encouraging growers to engage in
resource conservation efforts and look at the environmental,
social and economic aspects of many of the practices they
currently use in their farming operations.

To be proactive in regards to sustainability the National
Sustainable Soybean Initiative (NSSI) was created in
2011. NSSI’s mission is to develop a roadmap of soybean
management systems that will help producers to achieve
verifiable sustainability outcomes, improve the environmental
services and productivity of their farms, help their rural
communities thrive, and satisfy performance expectations of
the value chain.

We have developed a whole farm and soybean specific
sustainability protocol that incorporates questions linked to
environmental, economic and social sustainability
factors. These criteria have been established utilizing
researched based data from the Midwestern region. Growers
are able to use the information from this protocol for their own
on-farm research and marketing requirements.

To get a coordinated, regional baseline of sustainability of
soybeans, we are working on collecting data from growers for
the survey. No specific field or farm specific data will be
received on the collection end, but growers are able to keep the
data for themselves. We will only look at combined data and
grower specific data will be available. However, the
combined data will allow us to look at a baseline of where
soybeans growers in the Midwest are in regards to conservation
and sustainability practices, and we will use the data to better
enhance our research and educational programs. Furthermore,
this data can be used by state and national organizations for
communication and marketing purposes.

With this, we encourage you to participate by filling out
Whole Farm Assessment
(http://www.surveymonkey.com/s/3802488/NSSI-Sustainability-
Protocols-Whole-Farm-Section) and Soybean Assessment
(http://www.surveymonkey.com/s/776277/NSSI-CASH-
GRAIN-SOYBEAN-SPECIFIC-PLECT) protocols
online. For more information, please contact Shawn Conley
(spconley@wisc.edu) or look at coolbean.info.

Wisconsin Vegetable Update will have
Spanish versions
Amanda J. Gevens, Extension Plant Pathologist in Potatoes &
Vegetables

A Spanish version of the Vegetable Update newsletter will
be available at my website and the new UW Vegetable Team
website approximately 2 days after the distribution of the
English version. The new Vegetable Team site is intended as a
multidisciplinary resource for supporting potato and vegetable
production.

UW-Vegetable Pathology
website: http://www.plantpath.wisc.edu/wivegdis/
UW-Vegetable Team website: http://vegetables.wisc.edu

Many thanks to UW-Plant Pathology graduate students
Amilcar Sanchez Perez and Ana Cristina Fulladolsa for their
translations.

To view the fourth vegetable crop update in Spanish click
here.

2012 Sulfur Fertilizer Price Comparison for
Alfalfa
Carrie Laboski, Extension Soil Fertility and Nutrient
Management Specialist

Reports from Southwestern Wisconsin suggest that sulfur
deficiency may already be showing up in some alfalfa fields. Sulfur
(S) deficient alfalfa will appear lighter green, will be
shorter, and the plant will be more spindly with smaller leaves.
Some fields have patches of lighter green and may be
associated with eroded knolls; while other fields have an
overall lighter green color.

Sulfur deficiency can be confirmed with a tissue test. A plant
sample can be collected when the crop is in the bud to 1st
flower stage. Sample the top six inches from 30 to 40 stems
that represent the area being sampled. Samples should be
submitted to a lab in a plastic, not plastic, bag. If the S
concentration in the plant tissue is less than 0.25 %, then an
application of 25 lb S/a is needed, and should be applied before
there is substantial regrowth. In general, yield responses to
applied S will be greater as the plant tissue S concentration
decreases, though the recommended rate of S does not change.
Also keep in mind that if tissue S concentrations are 0.25% or
greater, there will be no significant increase in yield or
profitability from S applications.

If S deficiency is occurring, then a sulfate form of S must be
applied to alleviate the deficiency quickly. There is no effect of
sulfate source on yield, meaning that potassium sulfate,
calcium sulfate, or ammonium sulfate can all be used with
success. When choosing a S source for alfalfa consider overall
nutrient need and price of the fertilizer material.

Potassium sulfate may be a good choice of fertilizer for
alfalfa that is S deficient, because there are probably few
alfalfa stands in Wisconsin that wouldn’t benefit from the
potassium supplied by this fertilizer. The price of S, in
potassium sulfate is $0.77/lb of S if the value of K in this
fertilizer is taken into consideration. The nitrogen (N) in ammonium sulfate has no benefit to alfalfa making it a relatively expensive source of S at $0.93/lb S. For alfalfa, potassium sulfate is a better buy than ammonium sulfate. Calcium sulfate, mined gypsum, is an even better buy because the S is $0.59/lb, assuming no value to the Ca. A S fertilizer price comparison is provided in Table 1.

Table 1. Sulfur fertilizer price comparison using average prices in Wisconsin in March 2012.

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Price</th>
<th>Value of Nutrient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$/ton</td>
<td>S/lb of nutrient</td>
</tr>
<tr>
<td>Ammonium sulfate, 21-0-0-24S</td>
<td>445</td>
<td>0</td>
</tr>
<tr>
<td>Calcium sulfate, 23% Ca 19% S</td>
<td>223†</td>
<td>-</td>
</tr>
<tr>
<td>Potassium sulfate, 0-0-50-18S</td>
<td>817</td>
<td>0.54‡</td>
</tr>
<tr>
<td>Potash, 0-0-60</td>
<td>649</td>
<td>0.54</td>
</tr>
</tbody>
</table>

† Price of calcium sulfate is for mined gypsum, not flue gas desulfurization gypsum.
‡ The value of K in potassium sulfate was assumed to be the same value as K in potash. After $0.54/lb K₂O was allocated in the potassium sulfate, the remaining price of the fertilizer was assigned to S.