Crops

Economic Risk and Profitability of Soybean Seed Treatments at Reduced Seeding Rates

Vegetable Crop Update 4/28/14

UW Crop Diagnostic Training Center Workshops for 2014

Plant Disease

Plant Disease Diagnostic Clinic (PDDC) Update

Vegetable Crop Update 4/28/14

The third issue of the Vegetable Crop Update is now available. This issue contains information on early season hops, considerations for organic late blight control in potato and tomato, and an advertisement for an upcoming high tunnel workshop. To view this newsletter click here.

UW Crop Diagnostic Training Center Workshops for 2014

Registration is open for UW-Madison Integrated Pest Management Program’s two Crop Diagnostic Training Center workshops for 2014. The Diagnostic Troubleshooting Workshop will be held July 15, 2014. The Crop & Pest Management Workshop will be held August 5, 2014.

FAST and easy ONLINE registration by credit card:

https://patstore.wisc.edu/ipm/register.asp

Both workshops will be hosted at the Arlington Agricultural Research Station. Be aware that this is not a “traditional” field day. These training sessions are designed to be primarily in-field and hands-on. We advise that attendees come prepared to be in the field and ready for all types of weather. CCA CEU’s are available as listed, but are subject to change pending approval from the Certified Crop Advisor Program.

Contact Dan Heider at 608-262-6491, or email djheider@wisc.edu

Diagnostic Troubleshooting Workshop

Date: July 15, 2014
Location: Arlington Ag Research Station

CCA CEU’s: 4.0
Tiered fee: $75 before 7/1/11, $90 after 7/1/11

Topics Covered: This Workshop gives you the opportunity to fine tune your crop diagnostic skills in a fun and interactive setting. Small groups will rotate through field problems with UW Specialists role-playing as farmers. Through digging up plants, asking questions and consulting references participants will make a diagnosis of the problem being observed and a recommendation for correction. Each participant will experience 8 separate diagnostic scenarios.

Tuesday – July 15, 2014
9:00 - 9:20 registration
9:20 - 9:30 introduction/orientation
9:30 - 12:00 sessions 1-5
12:00 - 12:45 lunch (provided)
12:45 - 2:15 sessions 6-8

Crop & Pest Management Workshop

Date: August 5, 2014
Location: Arlington Ag Research Station

CCA CEU’s: 0.5 Crop Management, 3.5 Pest Management, 1.0 Nutrient Management
Tiered fee: $75 before 7/25/14, $90 after 7/25/14

A multi-disciplinary and in-depth workshop covering agronomic concerns ranging from identification of crop and pest production problems to management options within production systems.

Tuesday – August 5, 2014
8:30 - 8:50 registration
8:50 - 9:00 introduction/orientation
9:00 - 12:00 sessions 1-3
12:00 - 12:45 lunch (provided)
12:45 - 2:45 sessions 4-5

Topics Covered:

Nutrient uptake and partitioning in soybean – Shawn Conley, Extension Soybean and Small Grains Specialist

- Soybean nutrient requirements change with developmental stage
- Learn to understand these nutrient requirements and their effects on the growth and development of high yielding soybeans

Herbicide Mode of Action – *Vince Davis, Extension Weed Specialist*
- Understanding herbicide mode of action is critical to developing effective resistance management strategies
- This session will emphasize herbicides and emerging crop technologies, their use and resistance management strategies

The trait game – *Bryan Jensen, UW Integrated Pest Management Specialist*
- This session begins with a brief discussion on the biology and current management problems of Bt resistant western corn rootworm
- Learn to evaluate multiple corn rootworm management strategies for their efficacy and effectiveness in delaying the development of resistance

SCN / SDS Interaction – *Damon Smith, Extension Plant Pathology Specialist*
- Soybean cyst nematode and sudden death syndrome are both major yield limiting problems in soybean
- Learn to recognize/diagnose crop symptoms and discover where current research is on interactions between SCN and the SDS causing fungus

Spray drift mitigation in crop pest management – *Daniel Heider, UW Integrated Pest Management Specialist*
- Drift reduction has made great strides, but new emerging herbicide resistant technologies will require you to remain vigilant on drift
- Evaluate nozzles and other drift reduction technology in a field setting to better understand drift and how to manage it

To view the flyer for this event scroll down to the end of this newsletter.

Plant Disease Diagnostic Clinic (PDDC) Update

Brian Hudelson, Ann Joy, Erin DeWinter and Joyce Wu, Plant Disease Diagnostics Clinic

The PDDC receives samples of many plant and soil samples from around the state. The following diseases/disorders have been identified at the PDDC from April 19, 2014 through April 25, 2014.

| Plant/Sample Type, Disease/Disorder, Pathogen, County, SOIL, |
|---------------------------------|------------------------|------------------|
| Soybean Soil, Soybean Cyst Nematode, *Heterodera glycines*, Dane, Iowa, Richland |

For additional information on plant diseases and their control, visit the PDDC website at pddc.wisc.edu.

Follow us on
Economic Risk and Profitability of Soybean Seed Treatments at Reduced Seeding Rates

Adam P Gaspar, Shawn P Conley and John Gaska,
Department of Agronomy and Paul Mitchell,
Department of Agricultural and Applied Economics,
University of Wisconsin-Madison

The graduate fellowship for this project was sponsored by Syngenta Crop Protection.

Introduction

Earlier soybean planting coupled with increasing seed costs and higher commodity prices have led to a surge in the number of acres planted with seed treatments (Esker and Conley, 2012). Furthermore, the components and relative cost of various soybean seed treatments has broadened greatly. Recent studies have suggested that growers should consider lowering seeding rates to increase their return on investment (De Bruin and Pedersen, 2008; Epler and Staggenborg, 2008). This recommendation is attributed to the soybean plant’s potential compensatory ability at lower plant populations. Ultimately, growers would like to know the value proposition of combining seed treatments with lowered seeding rates. Therefore, the objectives of this study were to:

• Quantify the effects of seed treatments and seeding rates on soybean yield.
• Assess the economic risk and profitability of seed treatments and seeding rates, including calculating economically optimal seeding rate (EOSR) for each seed treatment.

ApronMaxx RFC and CruiserMaxx (Syngenta Crop Protection) seed treatments were used to achieve these objectives because they differ in their components and relative cost per unit. This study was conducted in 2012 and 2013 at nine Wisconsin locations. All locations were planted in 15 inch rows within the first 3 weeks of May.

Effects on Soybean Yield

When pooled over all seed treatments, the highest seeding rate (140,000 seeds/a) yielded 64 bu/a, which was significantly higher than all other seeding rates, except 120,000 seeds/a. ApronMaxx showed no improvements in yield at any seeding rate compared to the untreated control (UTC), while CruiserMaxx provided increased yields at all seeding rates (Figure 1). CruiserMaxx showed a trend of larger yield increases as the seeding rate was lowered. We observed a 4% and 12% yield increase at 140,000 and 40,000 seeds/a, respectively, over ApronMaxx and the UTC (Figure 1).

Figure 1. Yield (bu/a) of the three seed treatments across all seeding rates.
Profitability and Economic Risk

Partial profit was calculated as follows: (Yield x Grain Sale Price) – (Seed + Seed treatment cost). CruiserMaxx increased profit at each grain sale price and across all seeding rates compared to ApronMaxx and the UTC (Figure 2). Again, no differences were observed between ApronMaxx and the UTC (Figure 2). The economically optimal seeding rates (EOSR), or the high point on the profit curves, for the three seed treatments and two grain sale prices are displayed at the bottom of Tables 1 and 2.

Economic risk was applied to the profit curves (Figure 2), where risk is measured as the break even probability (the probability of breaking even relative to the base case of UTC at 140,000 seeds/a), and displayed in Tables 1 and 2 for soybean grain sale prices of $9 and $12/bu, respectively. For example, in Table 1, CruiserMaxx at 140,000 seeds/a had a 0.71 (71% chance) probability of increasing profit over the base case and on average for all outcomes (all environments), increased profit by $10/a. In addition, an average $18/a increase was observed for the positive outcomes and an average $11/a decrease for negative outcomes. The positive outcomes column represents responsive environments while the negative outcomes column represents non-responsive environments.

At a grain sale price of $9/bu (Table 1), ApronMaxx and the UTC obtained break-even probabilities >0.50 at seeding rates of 100,000 and 120,000 seeds/a. However, the average profit increases for all outcomes was minimal (<$3/a). At this grain sale price, UTC at 120,000 seeds/a had the lowest risk (0.91) of any treatment combination in Table 1, but again provided a relatively low average profit increase for all outcomes ($3/a). Using seeding rates below 100,000 seeds/a was very risky for ApronMaxx and the UTC, showing break-even probabilities <0.50 and negative average profit increase for all outcomes. CruiserMaxx produced break-even probabilities >0.50 for all seeding rates except at 40,000 seeds/a and the average profit increase for all outcomes was >$17/a at seeding rate between 80,000 and 120,000 seeds/a. Furthermore, the lowest risk (0.89) and largest average profit increase for all outcomes ($20/a) with CruiserMaxx was at its EOSR (94,000 seeds/a).

Figure 2. Partial profit per acre of the three seed treatments across all seeding rates.
When the grain sale price was increased to $12/bu (Table 2), ApronMaxx and the UTC required higher seeding rates (>120,000 seeds/a) to achieve break-even probabilities >0.50. Furthermore, we again saw trivial average profit increases for all outcomes (<$2/a) with ApronMaxx and the UTC. The lowest risk ApronMaxx treatment combination (0.52) was at its EOSR. However, this only attained a $1/a average profit increase for all outcomes and a wide range of possibilities existed when accounting for the average positive ($19/a) and negative (-$18/a) outcomes. CruiserMaxx showed relatively high break-even probabilities (>0.76) for seeding rates between 80,000 and 140,000 seeds/a, with the lowest risk (0.87) and largest average profit increase for all outcomes ($25/a) at its EOSR (100,500 seeds/a).

Table 1. Seeding rate by seed treatment economic risk table for all locations with a grain sale price of $9/bu.

<table>
<thead>
<tr>
<th>Treatment combination¹</th>
<th>Seed treatment</th>
<th>Seeding rate (seeds/acre)</th>
<th>Break-even probability²</th>
<th>Average profit increase over base case³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Positive outcomes</td>
</tr>
<tr>
<td>UTC</td>
<td></td>
<td>120,000</td>
<td>0.91</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,000</td>
<td>0.69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80,000</td>
<td>0.26</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60,000</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40,000</td>
<td>0.00 na</td>
<td>na</td>
</tr>
<tr>
<td>ApronMaxx</td>
<td>140,000</td>
<td>0.46</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>0.54</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>0.51</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>0.28</td>
<td>10</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>0.02</td>
<td>6</td>
<td>-36</td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>0.00 na</td>
<td>na</td>
<td>-98</td>
</tr>
<tr>
<td>CruiserMaxx</td>
<td>140,000</td>
<td>0.71</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>0.83</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>0.89</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>0.86</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>0.51</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>0.01</td>
<td>5</td>
<td>-51</td>
</tr>
</tbody>
</table>

ECONOMICALLY OPTIMAL SEEDING RATES (EOSR)

<table>
<thead>
<tr>
<th></th>
<th>UTC</th>
<th>111,500</th>
<th>0.84</th>
<th>4</th>
<th>3</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApronMaxx</td>
<td>111,000</td>
<td>0.54</td>
<td>14</td>
<td>2</td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>CruiserMaxx</td>
<td>94,000</td>
<td>0.89</td>
<td>23</td>
<td>20</td>
<td>-8</td>
<td></td>
</tr>
</tbody>
</table>

¹Treatment combination includes all possible seed treatment and seeding rate combinations for comparison to the base case.
²Break-even probability is the probability a treatment combination will at least provide the same profit/acre as the base case.
³Base case is untreated seed at 140,000 seeds/acre.
⁴na, no outcomes are possible.
Conclusion & Recommendations

Our study found differences in yield, profitability and economic risk due to seed treatment and seeding rate. Growers should account for their expected grain sale price and seed treatment use when determining their seeding rate and additionally, the components of the seed treatment should be considered. We found that reducing seeding rates when using no seed treatment or a fungicide only seed treatment (ApronMaxx) may be too risky and provided minimal profit gains. In contrast, this study also showed that a fungicide/insecticide seed treatment (CruiserMaxx) reduced economic risk and increased profit across an array of environments, seeding rates (80,000–140,000 seeds/a), and grain sale prices ($9/bu and $12/bu). Furthermore, to realize the lowest risk and highest profit increase with CruiserMaxx, producers should consider lowering their seeding rates to the EORS according to their expected grain sale price. The EORS for CruiserMaxx ranged from 94,000 to 101,000 seeds/a and was on average, 16% (18,000 seeds/a) less than ApronMaxx and the UTC across grain sale prices of $9/bu and $12/bu.

Table 2. Seeding rate by seed treatment economic risk table for all locations with a grain sale price of $12/bu.

<table>
<thead>
<tr>
<th>Treatment combination¹</th>
<th>Break-even probability²</th>
<th>Average profit increase over base case³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Break-even probability²</td>
<td>Positive outcomes</td>
</tr>
<tr>
<td>Seed treatment</td>
<td>(seeds/acre)</td>
<td>Positive outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>120,000</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>0.00</td>
</tr>
<tr>
<td>ApronMaxx</td>
<td>140,000</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>0.00</td>
</tr>
<tr>
<td>CruiserMaxx</td>
<td>140,000</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

ECONOMICALLY OPTIMAL SEEDING RATES (EOSR)

<table>
<thead>
<tr>
<th>Treatment combination¹</th>
<th>Break-even probability²</th>
<th>Average profit increase over base case³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Break-even probability²</td>
<td>Positive outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>119,500</td>
<td>0.76</td>
</tr>
<tr>
<td>ApronMaxx</td>
<td>119,000</td>
<td>0.52</td>
</tr>
<tr>
<td>CruiserMaxx</td>
<td>100,500</td>
<td>0.87</td>
</tr>
</tbody>
</table>

¹Treatment combination includes all possible seed treatment and seeding rate combinations for comparison to the base case.
²Break-even probability is the probability a treatment combination will at least provide the same profit/acre as the base case.
³Base case is untreated seed at 140,000 seeds/acre.
⁴na, no outcomes are possible.

References

Diagnostic Troubleshooting Workshop
July 15, 2014, Arlington Ag Research Station
CCA CEU’s: 4.0
Tiered fee: $75 before 7/1/11, $90 after 7/1/11
● 9:00 Registration and introduction
● 12:00 Lunch (provided)
● 2:15 Adjourn

This Workshop gives you the opportunity to fine tune your crop diagnostic skills in a fun and interactive setting. Small groups will rotate through field problems with UW Specialists role playing as farmers.

Through digging up plants, asking questions and consulting references participants will make a diagnosis of the problem being observed and a recommendation for correction. Each participant will experience 8 separate diagnostic scenarios.

Crop & Pest Management Workshop
August 5, 2014, Arlington Ag Research Station
CCA CEU’s: 0.5 Crop, 3.5 Pest, 1.0 Nutrient Management
Tiered fee: $75 before 7/25/14, $90 after 7/25/14
● 8:30 Registration and introduction
● 12:00 Lunch (provided)
● 2:45 Adjourn

This workshop will cover agronomic concerns ranging from identification of crop and pest production problems to management options within production systems.

Nutrient uptake and partitioning in soybean - Shawn Conley, Extension Soybean and Small Grains Specialist
● Soybean nutrient requirements effects on the growth and development of high yielding soybeans

Herbicide Mode of Action - Vince Davis, Extension Weed Specialist
● Herbicide mode of action and emerging crop technologies; their use and resistance management strategies

The trait game - Bryan Jensen, UW Integrated Pest Management Specialist
● Management strategies for Bt resistant western corn rootworm; their efficacy and effectiveness in delaying the development of resistance

SCN / SDS Interaction - Damon Smith, Extension Plant Pathology Specialist
● Soybean cyst nematode and sudden death syndrome symptoms; current research on interactions between SCN and the SDS causing fungus

Spray drift mitigation in crop pest management - Daniel Heider, UW Integrated Pest Management Specialist
● Drift reduction, emerging herbicide resistant technologies, nozzles and other drift reduction technology in field settings

Both workshops begin in the Public Events Facility of the Arlington Agricultural Research Station. Be aware that this is not a “traditional” field day. Training sessions are designed to be primarily in-field and hands-on. We advise that you come prepared for all types of weather.

FAST and easy ONLINE registration by credit card:
https://patstore.wisc.edu/ipm/register.asp

Contact: Dan Heider, 608-262-6491, djheider@wisc.edu
CCA CEU’s are subject to change pending approval from the Certified Crop Advisor Program.